Fractional Distance Measures for Content-Based Image Retrieval

نویسندگان

  • Peter Howarth
  • Stefan M. Rüger
چکیده

We have applied the concept of fractional distance measures, proposed by Aggarwal et al. [1], to content-based image retrieval. Our experiments show that retrieval performances of these measures consistently outperform the more usual Manhattan and Euclidean distance metrics when used with a wide range of high-dimensional visual features. We used the parameters learnt from a Corel dataset on a variety of different collections, including the TRECVID 2003 and ImageCLEF 2004 datasets. We found that the specific optimum parameters varied but the general performance increase was consistent across all 3 collections. To squeeze the last bit of performance out of a system it would be necessary to train a distance measure for a specific collection. However, a fractional distance measure with parameter p = 0.5 will consistently outperform both L1 and L2 norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Feature normalization and likelihood-based similarity measures for image retrieval

Distance measures like the Euclidean distance are used to measure similarity between images in content-based image retrieval. Such geometric measures implicitly assign more weighting to features with large ranges than those with small ranges. This paper discusses the effects of five feature normalization methods on retrieval performance. We also describe two likelihood ratio-based similarity me...

متن کامل

Content Based Image Retrieval using Contourlet Transform

Content Based Image Retrieval (CBIR) system using Contourlet Transform (CT) based features with high retrieval rate and less computational complexity is proposed in this paper. Unique properties of CT like directionality and anisotropy made it a powerful tool for feature extraction of images in the database. Improved results in terms of computational complexity and retrieval efficiency are obse...

متن کامل

On the Stability of Signature-Based Distance Functions for Content-Based Image Retrieval

Retrieving similar images from large image databases is a challenging task for today’s content-based retrieval systems. Aiming at high retrieval performance, these systems frequently capture the user’s notion of similarity through expressive image models and adaptive similarity measures. On the query side, image models can significantly differ in quality compared to those stored on the database...

متن کامل

An Empirical Study and Comparative Analysis of Content Based Image Retrieval (CBIR) Techniques with Various Similarity Measures

Content Based Image Retrieval (CBIR) is a process in which for a given query image similar images will be retrieved based on the image content similarity. Image content refers to its visual features, which are mathematical representations of a digital image. The image retrieval task primarily depends on image feature extraction and similarity measurement between the feature vectors. The perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005